

"C100" series

The "C100" series is a range of thirteen transformer clamps with all the advantages of our old "C30" series clamps whilst incorporating considerable improvements, particularly in the field of safety, ergonomics and performance:

- 1000 A measurement, excellent metrology, high accuracy, high level of linearity, symmetrical coil windings for minimum phase shift, pendular adjusting system for magnetic elements, maximum conductor diameter $\varnothing 52 \mathrm{~mm}$ and also some models with μ metal core specially made for wattmeter use.
- Innovative design: excellent ergonomics, handle with finger grips, assisted opening system for jaws (patented system).
- IEC 1010600 V cat. III safety (industry and services), antislip protection, conductor anti-pinching system,...
All this technology and manufacturing quality has been combined to provide the best measurement possible without any complications.
A "C100" series clamp is compatible with any instrument (multimeter, wattmeter, recorder, oscilloscope...) for safe measurement of AC currents without shutting down the installation.

Model C100

Current	1000 A
Ratio	$1000 / 1$
Output	$1 \mathrm{~mA} / \mathrm{A}$

Electrical specifications

Current calibre:

0.1 A AC ... 1200 A AC

Current transformation ratio:
1000:1
Output signal:

1 mA AC/AAC (1 A to 1000 A)
Accuracy and phase shift ${ }^{(1)}$:

Primary current	$0.1 \mathrm{~A} \ldots 10 \mathrm{~A}$	10 A	$50 \mathrm{~A}^{(2)}$	$200 \mathrm{~A}^{(2)}$	$1000 \mathrm{~A}^{(2)}$	$1200 \mathrm{~A}^{(2)}$
Accuracy in \% of output signal	$\leq 3 \%+0.1 \mathrm{~mA}$	$\leq 3 \%$	$\leq 1.5 \%$	$\leq 0.75 \%$	$\leq 0.5 \%$	$\leq 0.5 \%$
Phase shift	not specified	$\leq 3^{\circ}$	$\leq 1.5^{\circ}$	$\leq 0.75^{\circ}$	$\leq 0.5^{\circ}$	$\leq 0.5^{\circ}$

Bandwidth:

$30 \mathrm{~Hz} \ldots 10 \mathrm{kHz}(-3 \mathrm{~dB})$

Crest factor:

≤ 6 for a current ≤ 3000 A peak (500 Arms)

Maximum currents:

1000 A continuous for a frequency $\leq 1 \mathrm{kHz}$ (limitation proportional to the inverse frequency beyond)
1200 A for 40 minutes max. (interval between measurements > 20 minutes)

Load impedance:

$\leq 15 \Omega$
Operating voltage:
600 Vrms
Common mode voltage:
600 V category III and pollution degree 2
Influence of adjacent conductor:
$\leq 1 \mathrm{~mA} / \mathrm{A}$ at 50 Hz
Influence of conductor position in jaws:
$\leq 0.1 \%$ of output signal for frequencies $\leq 400 \mathrm{~Hz}$
Load influence:
from 5Ω to 15Ω
$<0.5 \%$ on measurement
$<0.5^{\circ}$ on phase
Influence of frequency ${ }^{(3)}$:
$<1 \%$ of output signal from $30 \mathrm{~Hz} \ldots 48 \mathrm{~Hz}$
$<0.5 \%$ of output signal from $65 \mathrm{~Hz} . . .1 \mathrm{kHz}$
$<1 \%$ of output signal from $1 \mathrm{kHz} \ldots 5 \mathrm{kHz}$
Influence of crest factor:
$<1 \%$ of output signal for crest factor ≤ 6 with current ≤ 3000 A peak (500 Arms)
Influence of DC current superimposed on rated current
$<1 \%$ of output signal for a current ≤ 30 A DC

Mechanical specifications

Operating temperature:
$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Storage temperature:
$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Influence of temperature:
$\leq 0.1 \%$ of output signal per $10^{\circ} \mathrm{K}$
Relative humidity for operation:
0 to 85% RH decreasing linearly above $35^{\circ} \mathrm{C}$
Influence of relative humidity
<0.1 \% of output signal from 10% to 85% RH
Operating altitude:
0 to 2,000 m
Max. jaw opening:
53 mm
Patented progressive opening system
Clamping capacity:
Cable: \varnothing max 52 mm
Busbar: 1 busbar of $50 \times 5 \mathrm{~mm} / 4$ busbars of $30 \times 5 \mathrm{~mm}$
Casing protection rating:
IP40 (IEC 529)
Drop test:
1 m (IEC 68-2-32)

Shock resistance:

100 g (IEC 68-2-27)
Vibration resistance:
$5 / 15 \mathrm{~Hz} 1.5 \mathrm{~mm}$
$15 / 25 \mathrm{~Hz} 1 \mathrm{~mm}$
$25 / 55 \mathrm{~Hz} 0.25 \mathrm{~mm}$
(IEC 68-2-6)
Self-extinguishing capability:
Casing and jaws: UL94 V0

Dimensions:

$216 \times 111 \times 45 \mathrm{~mm}$

Weight:

550 g
Colours:
Dark grey case with red jaws
Output:
Safety sockets (4 mm)

Safety specifications

Electrical safety:

Instrument with double insulation or reinforced insulation between the primary, the secondary and the grippable part located under the guard as per IEC 1010-1 \& IEC 1010-2-032

- 600 V category III, pollution degree 2
- 300 V category IV, pollution degree 2

Electromagnetic compatibility (EMC):
EN 50081-1: class B
EN 50082-2:

- Electrostatic discharge: IEC 1000-4-2
- Radiated field: IEC 1000-4-3
- Fast transients: IEC 1000-4-4
- Magnetic field at $50 / 60 \mathrm{~Hz}$: IEC 1000-4-8

To order	Reference
AC current clamp model C100 with operating manual	P01120301

Current	1000 A
Ratio	$1000 / 1$
Output	$1 \mathrm{~mA} / \mathrm{A}$

Description

An electronic voltage limiter protects the output of the clamp, if the secondary circuit is opened accidentally.

Electrical specifications

Current calibre:

0.1 A AC ... 1200 A AC

Current transformation ratio:
1000:1
Output signal:
$1 \mathrm{mAAC} / \mathrm{AAC}$ (1 A for 1000 A)
Accuracy and phase shift ${ }^{(1)}$:

Primary current	$0.1 \mathrm{~A} \ldots 10 \mathrm{~A}$	10 A	$50 \mathrm{~A}^{(2)}$	$200 \mathrm{~A}^{(2)}$	$1000 \mathrm{~A}^{(2)}$	$1200 \mathrm{~A}^{(2)}$
Accuracy in \% of output signal	$\leq 3 \%+0.1 \mathrm{~mA}$	$\leq 3 \%$	$\leq 1.5 \%$	$\leq 0.75 \%$	$\leq 0.5 \%$	$\leq 0.5 \%$
Phase shift	not specified	$\leq 3^{\circ}$	$\leq 1.5^{\circ}$	$\leq 0.75^{\circ}$	$\leq 0.5^{\circ}$	$\leq 0.5^{\circ}$

Bandwidth:

$30 \mathrm{~Hz} \ldots 10 \mathrm{kHz}(-3 \mathrm{~dB})$

Crest factor:

≤ 6 for a current ≤ 3000 A peak (500 Arms)

Maximum currents:

1000 A continuous for a frequency $\leq 1 \mathrm{kHz}$
(limitation proportional to the inverse frequency beyond)
1200 A for 40 minutes max. (interval between measurements >20 minutes)
Load impedance:
$\leq 15 \Omega$
Max. voltage output:
Electronic limiter 30 V max. peak
Operating voltage:
600 Vrms
Common mode voltage:
600 V category III and pollution degree 2
Influence of adjacent conductor:
$\leq 1 \mathrm{~mA} / \mathrm{A}$ at 50 Hz
Influence of conductor position in jaws:
$\leq 0.1 \%$ of output signal for frequencies $\leq 400 \mathrm{~Hz}$

Load influence:

from 5Ω to 15Ω
$<0.5 \%$ on measurement
$<0.5^{\circ}$ on phase
Influence of frequency ${ }^{(3)}$:
$<1 \%$ of output signal from $30 \mathrm{~Hz} \ldots 48 \mathrm{~Hz}$
$<0.5 \%$ of output signal from $65 \mathrm{~Hz} \ldots 1 \mathrm{kHz}$
$<1 \%$ of output signal from $1 \mathrm{kHz} \ldots 5 \mathrm{kHz}$

Influence of crest factor:
$<1 \%$ of output signal for crest factor ≤ 6 with current ≤ 3000 A peak (500 A rms)
Influence of DC current superimposed on
rated current:
$<1 \%$ of output signal for a current ≤ 30 A DC

Mechanical specifications

Operating temperature:
$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Storage temperature:
$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Influence of temperature:
$\leq 0.1 \%$ of output signal per $10^{\circ} \mathrm{K}$
Relative humidity for operation:
0 to 85% RH with a linear decrease above $35^{\circ} \mathrm{C}$
Influence of relative humidity:
$<0.1 \%$ of output signal from 10% to 85% RH
Operating altitude:
0 to 2,000 m
Max. jaw opening:
53 mm , patented progressive opening system

Clamping capacity:

Cable: \varnothing max 52 mm
Busbar: 1 busbar of $50 \times 5 \mathrm{~mm} / 4$ busbars of $30 \times 5 \mathrm{~mm}$
Casing protection rating:
IP40 (IEC 529)
Drop test:
1 m (IEC 68-2-32)

Shock resistance:
100 g (IEC 68-2-27)
Vibration resistance:
$5 / 15 \mathrm{~Hz} 1.5 \mathrm{~mm}-15 / 25 \mathrm{~Hz} 1 \mathrm{~mm}-$ $25 / 55 \mathrm{~Hz} 0.25 \mathrm{~mm}$ (IEC 68-2-6)
Self-extinguishing capability:
Casing and jaws: UL94 V0

Dimensions:

$216 \times 111 \times 45 \mathrm{~mm}$

Weight:

550 g
Colours:
Dark grey case with red jaws
Output:

- C102: safety sockets (4 mm)

■C103: two-wire cable with reinforced insulation or double insulation, length 1.5 m , terminated by 2 insulated elbowed male banana plugs, $\varnothing 4 \mathrm{~mm}$

Safety specifications

Electrical safety:

Instrument with double insulation or reinforced insulation between the primary, the secondary and the grippable part located under the guard as per IEC 1010-1 \& IEC 1010-2-032

- 600 V category III, pollution degree 2
- 300 V category IV, pollution degree 2

Electromagnetic compatibility (EMC):
EN 50081-1: class B
EN 50082-2:

- Electrostatic discharge: IEC 1000-4-2
- Radiated field: IEC 1000-4-3
- Fast transients: IEC 1000-4-4
- Magnetic field at $50 / 60 \mathrm{~Hz}$: IEC 1000-4-8

To order	Reference
AC current clamp model C102 with operating manual	P01120302
AC current clamp model C103 with operating manual	P01120303

Current	1000 A
Output	$1 \mathrm{mV} / \mathrm{A}$

Electrical specifications

Current calibre:

0.1 A AC... 1200 A AC

Output signal:
1 mVAC/A AC (1 V for 1000 A)
Accuracy and phase shift ${ }^{(1)}$:

Primary current	$0.1 \mathrm{~A} . .10 \mathrm{~A}$	10 A	50 A	200 A	1000 A	1200 A
\% Accuracy of output signal	$\leq 3 \%+0.1 \mathrm{mV}$	$\leq 3 \%$	$\leq 1.5 \%$	$\leq 0.75 \%$	$\leq 0.5 \%$	$\leq 0.5 \%$
Phase shift	not specified	$\leq 3^{\circ}$	$\leq 1.5^{\circ}$	$\leq 0.75^{\circ}$	$\leq 0.5^{\circ}$	$\leq 0.5^{\circ}$

Bandwidth:

$30 \mathrm{~Hz} . . .10 \mathrm{kHz}$

Crest factor:

≤ 6 for a current ≤ 3000 A peak (500 Arms)

Maximum currents:

1000 A continuous for a frequency $\leq 1 \mathrm{kHz}$
(limitation proportional to the inverse frequency beyond)
1200 A for 40 minutes max. (interval between measurements > 20 minutes)
Output impedance:
$1 \Omega \pm 1 \%$
Load impedance:
$\geq 1 \mathrm{M} \Omega$ and $\leq 100 \mathrm{pF}$
Operating voltage:
600 Vrms
Common mode voltage:
600 V category III and pollution degree 2
Influence of adjacent conductor:
$\leq 1 \mu \mathrm{~V} / \mathrm{A}$ at 50 Hz
Influence of conductor position in jaws:
$\leq 0.1 \%$ of output signal for frequencies $\leq 400 \mathrm{~Hz}$

Load influence:

On receiver, for an input impedance of 100Ω : $\leq 1 \%$ on measurement, no measurement on phase.
On receiver, for an input impedance of $1 \mathrm{k} \Omega$: $\leq 0.1 \%$ on measurement, no measurement on phase
Influence of frequency ${ }^{(2)}$:
$<1 \%$ of output signal from $30 \mathrm{~Hz} \ldots 48 \mathrm{~Hz}$
$<0.5 \%$ of output signal from $65 \mathrm{~Hz} \ldots 1 \mathrm{kHz}$
$<1 \%$ of output signal from $1 \mathrm{kHz} \ldots 5 \mathrm{kHz}$
Influence of crest factor:
$<1 \%$ of output signal for crest factor ≤ 6 with
current ≤ 3000 A peak (500 Arms)

Influence of DC current superimposed on rated current
$<1 \%$ of output signal for a current ≤ 30 A DC

Mechanical specifications

Operating temperature:
$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Storage temperature:
$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Influence of temperature:
$\leq 0.1 \%$ of output signal per $10^{\circ} \mathrm{K}$
Relative humidity for operation:
0 to 85% RH decreasing linearly above $35^{\circ} \mathrm{C}$
Influence of relative humidity:
< 0.1 \% of output signal from 10 \% to 85% RH
Operating altitude:
0 to 2,000 m
Max. jaw opening:
53 mm
Patented progressive opening system

Clamping capacity:

Cable: \varnothing max 52 mm
Busbar: 1 busbar of $50 \times 5 \mathrm{~mm} / 4$ busbars of $30 \times 5 \mathrm{~mm}$
Casing protection rating:
IP40 (IEC 529)
Drop test:
1 m (IEC 68-2-32)
Shock resistance:
100 g (IEC 68-2-27)
Vibration resistance:
$5 / 15 \mathrm{~Hz} 1.5 \mathrm{~mm}$
$15 / 25 \mathrm{~Hz} 1 \mathrm{~mm}$
$25 / 55 \mathrm{~Hz} 0.25 \mathrm{~mm}$
(IEC 68-2-6)

Self-extinguishing capability

Casing and jaws: UL94 V0
Dimensions:
$216 \times 111 \times 45 \mathrm{~mm}$

Weight:

550 g
Colours:
Dark grey case with red jaws
Output:

- C106: safety sockets (4 mm)

■ C107: two-wire cable with reinforced insulation or double insulation, length 1.5 m , terminated by 2 insulated elbowed male banana plugs, $\varnothing 4 \mathrm{~mm}$

Safety specifications

Electrical safety:

Instrument with double insulation or reinforced insulation between the primary, the secondary and the grippable part located under the guard as per IEC 1010-1 \& IEC 1010-2-032

- 600 V category III, pollution degree 2
- 300 V category IV, pollution degree 2

Electromagnetic compatibility (EMC):
EN 50081-1: class B
EN 50082-2:

- Electrostatic discharge: IEC 1000-4-2
- Radiated field: IEC 1000-4-3
- Fast transients: IEC 1000-4-4
- Magnetic field at $50 / 60 \mathrm{~Hz}$: IEC 1000-4-8
(1) Conditions of reference: $23^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{K}, 20 \%$ to $75 \% \mathrm{RH}$, sine signal, frequency of 48 Hz to 65 Hz , distortion factor $<1 \%$, no DC components, external magnetic field < $40 \mathrm{~A} / \mathrm{m}$, no AC magnetic field, conductor centred for measurement
(2) Out of reference domain.

To order	Reference
AC current clamp model C106 with operating manual	P01120304
AC current clamp model C107 with operating manual	P01120305

Current	1000 A
Ratio	$1000 / 1$
Output	$1 \mathrm{~mA} / \mathrm{A}$

Description

Thanks to their excellent technical performance (phase shift and linearity), these μ-metal core clamps are highly recommended for wattmeter use.
These clamps are protected at output against overvoltages

Electrical specifications

Current calibre:
0.001 A AC ... 1200 A AC

Current transformation ratio:
1000:1
Output signal:
1 mA AC/A AC (1 A for 1000 A)
Accuracy and phase shift ${ }^{(1)}$:

Primary current	$0.1 \mathrm{~A} \ldots 100 \mathrm{~mA}$	$0.1 \mathrm{~A} \ldots 1 \mathrm{~A}$	$1 \mathrm{~A} \ldots 10 \mathrm{~A}$	$10 \mathrm{~A} \ldots 100 \mathrm{~A}$	$100 \mathrm{~A} \ldots .1200 \mathrm{~A}$
\% Accuracy of output signal	$\leq 3 \%+5 \mu \mathrm{~A}$	$\leq 2 \%+3 \mu \mathrm{~A}$	$\leq 1 \%$	$\leq 0.5 \%$	$\leq 0.3 \%$
Phase shift	not specified	not specified	$\leq 2^{\circ}$	$\leq 1^{\circ}$	$\leq 0.7^{\circ}$

Bandwidth:

$30 \mathrm{~Hz} . .10 \mathrm{kHz}$

Crest factor:

≤ 6 for a current ≤ 2000 A peak (300 Arms)

Maximum currents:

1000 A continuous for a frequency $\leq 1 \mathrm{kHz}$ (limitation proportional to the inverse frequency beyond)
1200 A for 40 minutes max. (interval between measurements >20 minutes)
Load impedance:
$\leq 1 \Omega$
Max. voltage output:
Electronic limiter 30 V max. peak
Operating voltage:
600 Vrms
Common mode voltage:
600 V category III and pollution degree 2
Influence of adjacent conductor:
$\leq 0.5 \mathrm{~mA} / \mathrm{A}$ at 50 Hz
Influence of conductor position in jaws:
$\leq 0.1 \%$ of output signal for frequencies $\leq 400 \mathrm{~Hz}$
Load influence:
from 1Ω to 5Ω
$<0.1 \%$ on measurement
$<0.2^{\circ}$ on phase
Influence of frequency ${ }^{(2)}$:
$<0.5 \%$ of output signal from $30 \mathrm{~Hz} \ldots 48 \mathrm{~Hz}$
$<1 \%$ of output signal from $65 \mathrm{~Hz} \ldots 1 \mathrm{kHz}$
$<2 \%$ of output signal from $1 \mathrm{kHz} \ldots 5 \mathrm{kHz}$

Influence of crest factor:
$<1 \%$ of output signal for crest factor ≤ 6 with current ≤ 2000 A peak (300 A rms)
Influence of DC current superimposed on rated current:
$<1 \%$ of output signal for a current ≤ 15 A DC

Mechanical specifications

Operating temperature:
$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Storage temperature:
$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Influence of temperature:
$\leq 0.2 \%$ of output signal per $10^{\circ} \mathrm{K}$
Relative humidity for operation:
0 to 85 \% RH with a linear decrease above $35^{\circ} \mathrm{C}$
Influence of relative humidity:
<0.1 \% of output signal from 10 \% to 85% RH
Operating altitude:
0 to 2,000 m
Max. jaw opening:
53 mm , patented progressive opening system
Clamping capacity:
Cable: \varnothing max 52 mm
Busbar: 1 busbar of $50 \times 5 \mathrm{~mm} / 4$ busbars of $30 \times 5 \mathrm{~mm}$
Casing protection rating:
P40 (IEC 529)
Drop test:
1 m (IEC 68-2-32)

Shock resistance:
100 g (IEC 68-2-27)
Vibration resistance:
$5 / 15 \mathrm{~Hz} 1.5 \mathrm{~mm}, 15 / 25 \mathrm{~Hz} 1 \mathrm{~mm}$,
$25 / 55 \mathrm{~Hz} 0.25 \mathrm{~mm}$ (IEC 68-2-6)
Self-extinguishing capability:
Casing and jaws: UL94 V0
Dimensions:
$216 \times 111 \times 45 \mathrm{~mm}$
Weight:
550 g
Colours:
Dark grey case with red jaws
Output:

- C112: safety sockets (4 mm)
-C113: two-wire cable with reinforced insulation or double insulation, length 1.5 m , terminated by 2 insulated elbowed male banana plugs, Ø 4 mm

Safety specifications

Electrical safety:

Instrument with double insulation or reinforced insulation between the primary, the secondary and the grippable part located under the guard as per IEC 1010-1 \& IEC 1010-2-032

- 600 V category III, pollution degree 2
- 300 V category IV, pollution degree 2

Electromagnetic compatibility (EMC):
EN 50081-1: class B
EN 50082-2:

- Electrostatic discharge: IEC 1000-4-2
- Radiated field: IEC 1000-4-3
- Fast transients: IEC 1000-4-4
- Magnetic field at $50 / 60 \mathrm{~Hz}$: IEC 1000-4-8
(1) Conditions of reference: $23^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{K}, 20 \%$ to $75 \% \mathrm{RH}$, sine signal, frequency of 48 Hz to 65 Hz , distortion factor $<1 \%$, no DC components, external magnetic field < $40 \mathrm{~A} / \mathrm{m}$, no AC magnetic field, conductor centred for measurement, 1Ω load (1 VA)
(2) Out of reference domain.

To order	Reference
AC current clamp model C112 with operating manual	P01120314
AC current clamp model C113 with operating manual	P01120315

Current	1000 A
Output	$1 \mathrm{mV} / \mathrm{A}$

Description

Thanks to their excellent technical performance (phase shift and linearity), these μ-metal core clamps are highly recommended for wattmeter use.

Electrical specifications

Current calibre:
0.001 A AC ... 1200 A AC

Output signal:
1 mVAC/AAC (1 V for 1000 A)
Accuracy and phase shift ${ }^{(1)}$:

Primary current	$1 \mathrm{~mA} \ldots 100 \mathrm{~mA}$	$0.1 \mathrm{~A} \ldots 1 \mathrm{~A}$	$1 \mathrm{~A} \ldots 10 \mathrm{~A}$	$10 \mathrm{~A} \ldots 100 \mathrm{~A}$	$100 \mathrm{~A} \ldots 1200 \mathrm{~A}$
Accuracy in $\%$ of output signal	$\leq 3 \%+5 \mu \mathrm{~A}$	$\leq 2 \%+3 \mu \mathrm{~A}$	$\leq 1 \%$	$\leq 0.5 \%$	$\leq 0.3 \%$
Phase shift	not specified	not specified	$\leq 2^{\circ}$	$\leq 1^{\circ}$	$\leq 0.7^{\circ}$

Bandwidth:

$30 \mathrm{~Hz} . .10 \mathrm{kHz}$

Crest factor:

≤ 6 for a current ≤ 2000 A peak (300 Arms)

Maximum currents:

1000 A continuous for a frequency $\leq 1 \mathrm{kHz}$ (limitation proportional to the inverse frequency beyond)
1200 A for 40 minutes max. (interval between measurements > 20 minutes)

Output impedance:

$1 \Omega \pm 1 \%$
Load impedance:
$\geq 1 \mathrm{M} \Omega$ and $\leq 100 \mathrm{pF}$
Operating voltage:
600 V rms
Common mode voltage:
600 V category III and pollution degree 2
Influence of adjacent conductor:
$\leq 0.5 \mathrm{~mA} / \mathrm{A}$ at 50 Hz
Influence of conductor position in jaws:
$\leq 0.1 \%$ of output signal for frequencies $\leq 400 \mathrm{~Hz}$
Load influence:
On receiver, for an input impedance of 100Ω : $\leq 1 \%$ on measurement, no measurement on phase
On receiver, for an input impedance of $1 \mathrm{k} \Omega$: $\leq 0.1 \%$ on measurement, no measurement on phase
Influence of frequency ${ }^{(2)}$:
$<0.5 \%$ of output signal from $30 \mathrm{~Hz} . . .48 \mathrm{~Hz}$
$<1 \%$ of output signal from $65 \mathrm{~Hz} \ldots 1 \mathrm{kHz}$
$<2 \%$ of output signal from $1 \mathrm{kHz} \ldots 5 \mathrm{kHz}$

Influence of crest factor:
$<1 \%$ of output signal for crest factor ≤ 6 with current ≤ 2000 A peak
Influence of DC current superimposed on rated current:
$<1 \%$ of output signal for a current ≤ 15 A DC

Mechanical specifications

Operating temperature:
$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Storage temperature:
$40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Influence of temperature:
$\leq 0.2 \%$ of output signal per $10^{\circ} \mathrm{K}$
Relative humidity for operation:
0 to 85% RH decreasing linearly above $35^{\circ} \mathrm{C}$
Influence of relative humidity:
< 0.1 \% of output signal from 10 \% to 85% RH
Operating altitude:
0 to 2,000 m
Max. jaw opening:
53 mm , patented progressive opening system
Clamping capacity:
Cable: \varnothing max 52 mm
Busbar: 1 busbar of $50 \times 5 \mathrm{~mm} / 4$ busbars of $30 \times 5 \mathrm{~mm}$
Casing protection rating:
IP40 (IEC 529)
Drop test:
1 m (IEC 68-2-32)

Shock resistance:
100 g (IEC 68-2-27)
Vibration resistance:
$5 / 15 \mathrm{~Hz} 1.5 \mathrm{~mm}$
$15 / 25 \mathrm{~Hz} 1 \mathrm{~mm}$
$25 / 55 \mathrm{~Hz} 0.25 \mathrm{~mm}$
(IEC 68-2-6)
Self-extinguishing capability:
Casing and jaws: UL94 V0

Dimensions:

$216 \times 111 \times 45 \mathrm{~mm}$
Weight:
550 g
Colours:
Dark grey case with red jaws
Output:
■ C116: safety sockets (4 mm)
■ C117: two-wire cable with reinforced insulation or double insulation, length 1.5 m , terminated by 2 insulated elbowed male banana plugs, $\varnothing 4 \mathrm{~mm}$

Safety specifications

Electrical safety:
Instrument with double insulation or reinforced insulation between the primary, the secondary and the grippable part located under the guard as per IEC 1010-1 \& IEC 1010-2-032

- 600 V category III, pollution degree 2
- 300 V category IV, pollution degree 2

Electromagnetic compatibility (EMC):
EN 50081-1: class B
EN 50082-2:

- Electrostatic discharge: IEC 1000-4-2
- Radiated field: IEC 1000-4-3
- Fast transients: IEC 1000-4-4
- Magnetic field at $50 / 60 \mathrm{~Hz}$: IEC 1000-4-8
(1) Conditions of reference: $23^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{K}, 20 \%$ to $75 \% \mathrm{RH}$, sine signal, frequency of 48 Hz to 65 Hz , distortion factor $<1 \%$, no DC components, external magnetic field $<40 \mathrm{~A} / \mathrm{m}$, no AC magnetic field, conductor centred for measurement, load impedance $\geq 1 \mathrm{M} \Omega$ and $\leq 100 \mathrm{pF}$
(2) Out of reference domain

To order	Reference
AC current clamp model C116 with operating manual	P01120316
AC current clamp model C117 with operating manual	P01120317

Model C122

Current	1000 A
Ratio	$1000 / 5$
Output	$5 \mathrm{~mA} / \mathrm{A}$

Description

An electronic voltage-limiting system protects output of clamp when operating, if the secondary circuit is opened accidentally.

Electrical specifications

Current calibre:
1 A AC... 1200 A AC
Current transformation ratio:
1000:5
Output signal:
5 mA AC/A AC (5 A for 1000 A)
Accuracy and phase shift ${ }^{(1)}$:

Primary current	$1 \mathrm{~A} \ldots 20 \mathrm{~A}$	20 A	$50 \mathrm{~A}^{(2)}$	$200 \mathrm{~A}^{(2)}$	$1000 \mathrm{~A}^{(2)}$	$1200 \mathrm{~A}^{(2)}$
Accuracy in \%	$\leq 6 \%+0.5 \mathrm{~mA}$	$\leq 5 \%$	$\leq 3 \%$	$\leq 1.5 \%$	$\leq 1 \%$	$\leq 1 \%$
Phase shift	not specified	$\leq 3^{\circ}$	$\leq 3^{\circ}$	$\leq 1.5^{\circ}$	$\leq 1^{\circ}$	$\leq 1^{\circ}$

Bandwidth:

$30 \mathrm{~Hz} . . .10 \mathrm{kHz}$

Crest factor:

≤ 6 for a current ≤ 3000 A peak (500 Arms)

Maximum currents:

1000 A continuous for a frequency $\leq 1 \mathrm{kHz}$ (limitation proportional to the inverse frequency beyond)
1200 A for 30 minutes max (interval between measurements >15 minutes)
Load impedance:
$\leq 0.6 \Omega$
Impedance of connection leads:
$\leq 40 \mathrm{~m} \Omega$
Max. voltage at output (secondary circuit open):
Electronic limiter 30 V max. peak
Operating voltage:
600 V rms
Common mode voltage:
600 V category III and pollution degree 2
Influence of adjacent conductor:
$\leq 1 \mathrm{~mA} / \mathrm{A}$ at 50 Hz
Influence of conductor position in jaws:
$\leq 0.2 \%$ of output signal for frequencies
$\leq 400 \mathrm{~Hz}$
Load influence:
from 0.2Ω to 0.6Ω
$<0.5 \%$ on measurement
$<0.5^{\circ}$ on phase
Influence of frequency ${ }^{(3)}$:
$<1 \%$ of output signal from $30 \mathrm{~Hz} \ldots 48 \mathrm{~Hz}$
$<0.5 \%$ of output signal from $65 \mathrm{~Hz} . . .1 \mathrm{kHz}$
$<1 \%$ of output signal from $1 \mathrm{kHz} \ldots 5 \mathrm{kHz}$

Influence of crest factor:
$<1 \%$ of output signal for crest factor ≤ 6 with current ≤ 3000 A peak (500 Arms)
Influence of DC current superimposed on rated current:
$<1 \%$ of output signa
for a current ≤ 30 A DC

Mechanical specifications

Operating temperature:
$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Storage temperature:
$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Influence of temperature:
$\leq 0.1 \%$ of output signal per $10^{\circ} \mathrm{K}$
Relative humidity for operation:
0 to 85 \% RH with a linear decrease above $35^{\circ} \mathrm{C}$
Influence of relative humidity:
< 0.2 \% of output signal from 10% to 85% RH
Operating altitude:
0 to 2,000 m
Max. jaw opening:
53 mm , patented progressive opening system
Clamping capacity:

- Cable: \varnothing max 52 mm
- Busbar: 1 busbar of $50 \times 5 \mathrm{~mm} /$

4 busbars of $30 \times 5 \mathrm{~mm}$
Casing protection rating:
IP40 (IEC 529)
Drop test:
1 m (IEC 68-2-32)

Shock resistance:
100 g (IEC 68-2-27)
Vibration resistance:
$5 / 15 \mathrm{~Hz} 1.5 \mathrm{~mm}$
$15 / 25 \mathrm{~Hz} 1 \mathrm{~mm}$
$25 / 55 \mathrm{~Hz} 0.25 \mathrm{~mm}$
(IEC 68-2-6)
Self-extinguishing capability:
Casing and jaws: UL94 V0
Dimensions:
$216 \times 111 \times 45 \mathrm{~mm}$

Weight:

550 g
Colours:
Dark grey case with red jaws
Output:
Safety sockets (4 mm)

Safety specifications

Electrical safety:

Instrument with double insulation or reinforced insulation between the primary, the secondary and the grippable part located under the guard as per IEC 1010-1 \& IEC 1010-2-032

- 600 V category III, pollution degree 2
- 300 V category IV, pollution degree 2

Electromagnetic compatibility (EMC):
EN 50081-1: class B
EN 50082-2:

- Electrostatic discharge: IEC 1000-4-2
- Radiated field: IEC 1000-4-3
- Fast transients: IEC 1000-4-4
- Magnetic field at $50 / 60 \mathrm{~Hz}$: IEC 1000-4-8
(1) Conditions of reference: $23^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{K}, 20 \%$ to $75 \% \mathrm{RH}$, sine signal, frequency of 48 Hz to 65 Hz , distortion factor $<1 \%$, no DC components, external magnetic field $<40 \mathrm{~A} / \mathrm{m}$, no AC magnetic field, conductor centred for measurement, load impedance $0.2 \Omega(5 \mathrm{VA})$
(2) Accuracy class in accordance with IEC 185: 5 VA - class 1-48 ... 65 Hz
(3) Out of reference domain

To order	Reference
AC current clamp model C122 with operating manual	P01120306

Model C148

Current	250 AAC	500 AAC	1000 AAC
Ratio	$250: 5$	$500: 5$	$1000: 5$
Output	$20 \mathrm{~mA} / \mathrm{A}$	$10 \mathrm{~mA} / \mathrm{A}$	$5 \mathrm{~mA} / \mathrm{A}$

Description

An electronic voltage-limiting system protects output of clamp when operating if the secondary circuit is opened accidentally.

Electrical specifications

Current calibres:

1 AAC... 300 A AC
1 A AC... 600 A AC
1 AAC... 1200 AAC
Current transformation ratio
250:5
500:5
1000:5

Output signal:

$20 \mathrm{mAAC} / \mathrm{A} \mathrm{AC}$ (5 A for 250 A)
$10 \mathrm{mAAC} / \mathrm{A} \mathrm{AC}$ (5 A for 500 A)
5 mA AC/A AC (5 A for 1000 A)
Accuracy and phase shift ${ }^{(1)}$:

- 250 A calibre

Primary current	$1 \mathrm{~A} \ldots 5 \mathrm{~A}$	5 A	$12.5 \mathrm{~A}^{(2)}$	$50 \mathrm{~A}^{(2)}$	$250 \mathrm{~A}^{(2)}$	$300 \mathrm{~A}^{(2)}$
Accuracy in $\%$	$\leq 10 \%+2 \mathrm{~mA}$	$\leq 10 \%$	$\leq 5 \%$	$\leq 2.5 \%$	$\leq 2 \%$	$\leq 2 \%$
Phase shift	not specified	not specified	$\leq 10^{\circ}$	$\leq 10^{\circ}$	$\leq 10^{\circ}$	$\leq 10^{\circ}$

■ 500 A calibre

Primary current	$1 \mathrm{~A} \ldots 10 \mathrm{~A}$	10 A	$25 \mathrm{~A}^{(3)}$	$100 \mathrm{~A}^{(3)}$	$500 \mathrm{~A}^{(3)}$	$600 \mathrm{~A}^{(3)}$
Accuracy in \%	$\leq 6 \%+1 \mathrm{~mA}$	$\leq 6 \%$	$\leq 3 \%$	$\leq 2 \%$	$\leq 1 \%$	$\leq 1 \%$
Phase shift	not specified	$\leq 6^{\circ}$	$\leq 4^{\circ}$	$\leq 3^{\circ}$	$\leq 2.5^{\circ}$	$\leq 2.5^{\circ}$

- 1000 A calibre

Primary current	$1 \mathrm{~A} \ldots 20 \mathrm{~A}$	20 A	$50 \mathrm{~A}^{(4)}$	$200 \mathrm{~A}^{(4)}$	$1000 \mathrm{~A}^{(4)}$	$1200 \mathrm{~A}^{(4)}$
Accuracy in $\%$	$\leq 6 \%+0.5 \mathrm{~mA}$	$\leq 5 \%$	$\leq 3 \%$	$\leq 1.5 \%$	$\leq 1 \%$	$\leq 1 \%$
Phase shift	not specified	$\leq 5^{\circ}$	$\leq 3^{\circ}$	$\leq 1.5^{\circ}$	$\leq 1^{\circ}$	$\leq 1^{\circ}$

Bandwidth:

$48 \mathrm{~Hz} . . .1 \mathrm{kHz}$

Crest factor:

- 250 A calibre:
≤ 6 with current ≤ 750 A peak
- 500 A calibre:
≤ 6 with current ≤ 1500 A peak
- 1000 A calibre:
≤ 6 with current ≤ 3000 A peak

Maximum currents:

1200 A for frequencies $\leq 1 \mathrm{kHz}$ for 30 minutes max. (interval between measurements >15 minutes)
Load impedance:
■ 250 A calibre: $\leq 0.2 \Omega$
■ 500 A calibre: $\leq 0.4 \Omega$
■ 1000 A calibre: $\leq 0.4 \Omega$

Impedance of connection leads:
$\leq 40 \mathrm{~m} \Omega$
Max. voltage at output (secondary circuit open):
Electronic limiter 30 V max. peak

Operating voltage:

600 Vrms
Common mode voltage:
600 V category III and pollution degree 2
Influence of adjacent conductor:
■ 250 A calibre $: \leq 15 \mathrm{~mA} / \mathrm{A}$ at 50 Hz

- 500 A calibre: $\leq 10 \mathrm{~mA} / \mathrm{A}$ at 50 Hz

■ 1000 A calibre: $\leq 1 \mathrm{~mA} / \mathrm{A}$ at 50 Hz
Influence of conductor position in jaws:
for frequencies $\leq 400 \mathrm{~Hz}$
■ 250 A calibre: $\leq 0.6 \%$ of output signal
■ 500 A calibre: $\leq 0.4 \%$ of output signal
■ 1000 A calibre: $\leq 0.2 \%$ of output signal

Load influence:

- 250 A calibre: from $25 \mathrm{~m} \Omega$ to 0.2Ω
$<2 \%$ on measurement
$<4^{\circ}$ on phase
■ 500 A calibre: from $50 \mathrm{~m} \Omega$ to 0.4Ω
< 1 \% on measurement
$<2^{\circ}$ on phase
■ 1000 A calibre: from $50 \mathrm{~m} \Omega$ to 0.4Ω
< 0.5 \% on measurement
$<0.5^{\circ}$ on phase
Influence of frequency ${ }^{(5)}$
- 250 A calibre:
$<1 \%$ of output signal from $65 \mathrm{~Hz} . .100 \mathrm{~Hz}$
$<5 \%$ of output signal from $100 \mathrm{~Hz} \ldots 1 \mathrm{kHz}$
■ 500 A calibre:
$<1 \%$ of output signal from $65 \mathrm{~Hz} \ldots 1 \mathrm{kHz}$
- 1000 A calibre:
$<0.5 \%$ of output signal from $65 \mathrm{~Hz} . .100 \mathrm{~Hz}$ $<1 \%$ of output signal from $100 \mathrm{~Hz} \ldots 1 \mathrm{kHz}$ Influence of crest factor:
$<1 \%$ of output signal for crest factor ≤ 6 with current:
≤ 750 A peak (250 A calibre)
≤ 1500 A peak (500 A calibre)
≤ 3000 A peak (1000 A calibre)
Influence of DC current superimposed on rated current:
$<1 \%$ of output signal for a current ≤ 30 A DC

Model C148

Mechanical specifications

Operating temperature:
$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$

Storage temperature:

$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Influence of temperature:
$\leq 0.15 \%$ of output signal per $10^{\circ} \mathrm{K}$
Relative humidity for operation:
0 to 85% RH decreasing linearly above $35^{\circ} \mathrm{C}$
Influence of relative humidity:
10 \% to 85 \% RH

- 250 A calibre:
$<0.6 \%$ of output signal and $<2^{\circ}$ on phase
■ 500 A calibre:
$<0.4 \%$ of output signal and $<0.6^{\circ}$ on phase
■ 1000 A calibre:
$<0.2 \%$ of output signal and $<0.2^{\circ}$ on phase
Operating altitude:
0 to 2,000 m
Max. jaw opening:
53 mm
Patented progressive opening system

Clamping capacity:
Cable: \varnothing max 52 mm
Busbar: 1 busbar of $50 \times 5 \mathrm{~mm} / 4$ busbars of $30 \times 5 \mathrm{~mm}$
Casing protection rating:
IP40 (IEC 529)
Drop test:
1 m (IEC 68-2-32)
Shock resistance:
100 g (IEC 68-2-27)
Vibration resistance:
$5 / 15 \mathrm{~Hz} 1.5 \mathrm{~mm}$
$15 / 25 \mathrm{~Hz} 1 \mathrm{~mm}$
$25 / 55 \mathrm{~Hz} 0.25 \mathrm{~mm}$
(IEC 68-2-6)
Self-extinguishing capability: UL94 V0
Dimensions:
$216 \times 111 \times 45 \mathrm{~mm}$
Weight:
550 g
Colours:
Dark grey case with red jaws
Output:
Safety sockets (4 mm)

Safety specifications

Electrical safety:

Instrument with double insulation or reinforced insulation between the primary, the secondary and the grippable part located under the guard as per IEC 1010-1 \& IEC 1010-2-032

- 600 V category III, pollution degree 2
- 300 V category IV, pollution degree 2

Electromagnetic compatibility (EMC):
EN 50081-1: class B
EN 50082-2:

- Electrostatic discharge: IEC 1000-4-2
- Radiated field: IEC 1000-4-3
- Fast transients: IEC 1000-4-4
- Magnetic field at $50 / 60 \mathrm{~Hz}$: IEC $1000-4-8$
(3) Accuracy class in accordance with IEC 185: 5VA - class $3-48-65 \mathrm{~Hz}$
(4) Accuracy class in accordance with IEC 185: 5VA - class $1-48-65 \mathrm{~Hz}$
(5) Out of reference domain

To order	Reference
AC current clamp model C148 with operating manual	P01120307

Model C160 (insulated AC current probe)

Current	30 A peak	300 A peak	2000 A peak
Output	$100 \mathrm{mV} / \mathrm{A}$	$10 \mathrm{mV} / \mathrm{A}$	$1 \mathrm{mV} / \mathrm{A}$

Description

This 1,000 A AC clamp can be used for easy display and measurement of current curves. Equipped with a coaxial cable terminated by a BNC connector, it is ideal for use with any oscilloscope. It outputs a signal in mV directly proportional to the current. It offers 3 different sensitivities.

Electrical specifications

Current calibres:

0.1 A AC... 10 AAC (30 A peak)

1 A AC... 100 A AC (300 A peak)
1 A AC... 1000 A AC (2000 A peak)

Output signal:

$100 \mathrm{mVAC} / \mathrm{AAC}(1 \mathrm{~V}$ for 10 A$)$
$10 \mathrm{mVAC} / \mathrm{AAC}(1 \mathrm{~V}$ for 100 A$)$
$1 \mathrm{mAAC} / \mathrm{AAC}(1 \mathrm{~V}$ for 1000 A$)$

Accuracy and phase shift ${ }^{(1)}$:

- 10 A calibre

Primary current	$0.1 \mathrm{~A} \ldots 0.5 \mathrm{~A}$	$0.5 \mathrm{~A} \ldots 2 \mathrm{~A}$	$2 \mathrm{~A} \ldots 10 \mathrm{~A}$	$10 \mathrm{~A} \ldots . .12 \mathrm{~A}$
\% Accuracy of output signal	$\leq 3 \%+10 \mathrm{mV}$			
Phase shift	not specified	not specified	$\leq 15^{\circ}$	$\leq 15^{\circ}$

- 100 A calibre

Primary current	$0.1 \mathrm{~A} \ldots 5 \mathrm{~A}$	$5 \mathrm{~A} \ldots 20 \mathrm{~A}$	$20 \mathrm{~A} \ldots 100 \mathrm{~A}$	$100 \mathrm{~A} \ldots . .120 \mathrm{~A}$
\% Accuracy of output signal	$\leq 2 \%+5 \mathrm{mV}$			
Phase shift	not specified	$\leq 15^{\circ}$	$\leq 10^{\circ}$	$\leq 5^{\circ}$

- 1000 A calibre

Primary current	$1 \mathrm{~A} \ldots 50 \mathrm{~A}$	$50 \mathrm{~A} \ldots 200 \mathrm{~A}$	$200 \mathrm{~A} \ldots 1000 \mathrm{~A}$	$1000 \mathrm{~A} \ldots .1200 \mathrm{~A}$
\% Accuracy of output signal	$\leq 1 \%+1 \mathrm{mV}$			
Phase shift	not specified	$\leq 3^{\circ}$	$\leq 2^{\circ}$	$\leq 1^{\circ}$

Bandwidth:

$10 \mathrm{~Hz} \ldots 100 \mathrm{kHz}(-3 \mathrm{~dB})$ (depending on current value)
Rise/fall time from 10 \% to 90% :
$3.5 \mu \mathrm{~s}$
10 \% delay time:
$0.5 \mu \mathrm{~s}$
Ampere second product:

- 10 A calibre: 3.2 A.s
- 100 A calibre: 26 A.s
- 1000 A calibre: 64 A.s

Maximum currents:

1000 A permanent
1200 A for 40 minutes max. / >20 minutes shutdown for a frequency $\leq 1 \mathrm{kHz}$ (limitation proportional to the inverse of one third of the frequency beyond that)

Insertion impedance (at $400 \mathrm{~Hz} / 10 \mathrm{kHz}$)

- 10 A calibre: $<0.3 \mathrm{~m} \Omega /<6,6 \mathrm{~m} \Omega$
- 100 A calibre $:<0.3 \mathrm{~m} \Omega /<2 \mathrm{~m} \Omega$
- 1000 A calibre: $<0.3 \mathrm{~m} \Omega /<1.6 \mathrm{~m} \Omega$

Output impedance at 1 kHz :
■ 10 A calibre: $\leq 515 \Omega \pm 10 \%$

- 100 A calibre: $\leq 515 \Omega \pm 10 \%$
- 1000 A calibre: $\leq 515 \Omega \pm 10 \%$

Influence of temperature:
$\leq 150 \mathrm{ppm} / \mathrm{k}$ or 0.15% of output signal per $10^{\circ} \mathrm{K}$
Influence of relative humidity:
$<0.1 \%$ of output signal
Influence of adjacent conductor:
$\leq 1 \mathrm{~mA} / \mathrm{A}$ at 50 Hz
Influence of DC current superimposed on rated current:
$<1 \%$ of output signal for a current ≤ 30 A DC

Influence of conductor position in jaws: $\leq 0.1 \%$ of output signal for frequencies $\leq 400 \mathrm{~Hz}$
Influence of frequency ${ }^{(2)}$

- 10 A calibre:
$<10 \%$ of output signal from 10 Hz to 1 kHz $<5 \%$ of output signal from 1 kHz to 10 kHz $<20 \%$ of output signal from 10 kHz to 50 kHz 3 dB of output signal from 50 kHz to 100 kHz
■ 100 A calibre:
$<5 \%$ of output signal from 10 Hz to 1 kHz $<3 \%$ of output signal from 1 kHz to 10 kHz $<20 \%$ of output signal from 10 kHz to 50 kHz 3 dB of output signal from 50 kHz to 100 kHz

- 1000 A calibre:

$<1 \%$ of output signal from 10 Hz to 1 kHz $<2 \%$ of output signal from 1 kHz to 10 kHz $<10 \%$ of output signal from 10 kHz to 50 kHz 3 dB of output signal from 50 kHz to 100 kHz Influence of crest factor:
$<1 \%$ of output signal for crest factor ≤ 6 with current
■ 10 A calibre: ≤ 30 A peak

- 100 A calibre: ≤ 300 A peak
- 1000 A calibre: ≤ 3000 A peak

Model C160 (insulated AC current probe)

Mechanical specifications

Max. jaw opening:
53 mm

Clamping capacity:

Cable: \varnothing max 52 mm
Busbar: 1 busbar of $50 \times 5 \mathrm{~mm} / 4$ busbars of $30 \times 5 \mathrm{~mm}$
Operating temperature:
$-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature:
$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Relative humidity for operation:
0 to 85 \% RH decreasing linearly above $35^{\circ} \mathrm{C}$
Operating altitude:
0 to $2,000 \mathrm{~m}$
Casing protection rating:
IP30 with clamp open (IEC 529)
IP40 with clamp closed (IEC 529)
Drop test:
1 m (IEC 68-2-32)

Shock resistance:
$100 \mathrm{~g} / 6 \mathrm{~ms}$ / half-period (IEC 68-2-27)
Protection against impacts:
IK04 0.5 J (EN 50102)
Vibration resistance:
$5 / 15 \mathrm{~Hz} 1.5 \mathrm{~mm}$ peak
15/25 Hz 1 mm peak
$25 / 55 \mathrm{~Hz} 0.25 \mathrm{~mm}$ peak
(IEC 68-2-6)
Self-extinguishing capability:
Casing and jaws: UL94 Vo
Dimensions:
$216 \times 111 \times 45 \mathrm{~mm}$
Weight:
550 g
Colours:
Dark grey case with red jaws
Output:
2 m coaxial lead with insulated BNC plug

Safety specifications

Electrical safety:

Instrument with double insulation or reinforced insulation between the primary, the secondary and the grippable part located under the guard as per IEC 1010-1 \& IEC 1010-2-032

- 600 V category III, pollution degree 2
-300 V category IV, pollution degree 2
Electromagnetic compatibility (EMC):
EN 50081-1: class B
EN 50082-2:
- Electrostatic discharge: IEC 1000-4-2 without disturbance: 4 kV class 2 non-destructive: 15 kV class 4
- Radiated field: IEC 1000-4-3
without disturbance: $10 \mathrm{~V} / \mathrm{m}$ performance criterion A
- Fast transients: IEC 1000-4-4
without disturbance: 1 kV class 2
non-destructive: 2 kV class 3
- Magnetic field at $50 / 60 \mathrm{~Hz}$: IEC 1000-4-8 field of $400 \mathrm{~A} / \mathrm{m}$ at $50 \mathrm{~Hz}:<1 \mathrm{~A}$

To order	Reference
AC current clamp model C160 with operating manual	P01120308

Model C160 (insulated AC current probe)

■ Curves at 50 Hz

Model C160 (insulated AC current probe)

■ Frequency response (cont.)

100 A calibre

Model C160 (insulated AC current probe)

■ Frequency response (cont.)

■ Response to a square signal
1000 A calibre

Oscilloscope clamp for AC current

Model C160 (insulated AC current probe)

Response to a square signal (cont.)

10 A calibre

Model C173 (probe for leakage currents)

Current	1 A	10 A	100 A	1000 A
Output	$1 \mathrm{~V} / \mathrm{A}$	$100 \mathrm{mV} / \mathrm{A}$	$10 \mathrm{mV} / \mathrm{A}$	$1 \mathrm{mV} / \mathrm{A}$

Description

The C173 clamp measures leakage or differential currents from 1 mA upwards and can also be used with multimeters equipped with a range in mV AC.
The C173 clamp measures earth-loop currents and leakage currents. It also locates faults in circuits of single and three-phase networks.
For unearthed three-phase systems, use the optional Artificial Neutral.

Electrical specifications

Current calibres:

0.001 A AC ...1.2 A AC
0.01 A AC ... 12 A AC
0.1 A AC ... 120 A AC

1 AAC... 1200 A AC
Output signal:
1 VAC/A AC (1 V for 1 A)
$100 \mathrm{mVAC} / \mathrm{AAC}(1 \mathrm{~V}$ for 10 A$)$
$10 \mathrm{mVAC} / \mathrm{AAC}(1 \mathrm{~V}$ for 100 A$)$
$1 \mathrm{mVAC} / \mathrm{AAC}$ (1 V for 1000 A)
Accuracy and phase shift ${ }^{(1)}$:

- 1 A calibre

Primary current	$0.001 \mathrm{~A} \ldots 0.01 \mathrm{~A}$	$0.01 \mathrm{~A} \ldots 0.1 \mathrm{~A}$	$0.1 \mathrm{~A} \ldots 1 \mathrm{~A}$	$1 \mathrm{~A} \ldots 1.2 \mathrm{~A}$
\% Accuracy of output signal	$\leq 3 \%+1 \mathrm{mV}$	$\leq 3 \%+1 \mathrm{mV}$	$\leq 0.7 \%+1 \mathrm{mV}$	$\leq 0.7 \%+1 \mathrm{mV}$
Phase shift	not specified	not specified	$\leq 10^{\circ}$	$\leq 10^{\circ}$

- 10 A calibre

Primary current	$0.01 \mathrm{~A} \ldots 0.1 \mathrm{~A}$	$0.1 \mathrm{~A} \ldots . .1 \mathrm{~A}$	$1 \mathrm{~A} \ldots 10 \mathrm{~A}$	$10 \mathrm{~A} \ldots 12 \mathrm{~A}$
Accuracy in $\%$ of output signal	$\leq 1 \%+0.2 \mathrm{mV}$	$\leq 0.5 \%+0.2 \mathrm{mV}$	$\leq 0.5 \%$	$\leq 0.5 \%$
Phase shift	not specified	$\leq 5^{\circ}$	$\leq 2^{\circ}$	$\leq 2^{\circ}$

■ 100 A calibre

Primary current	$0.1 \mathrm{~A} \ldots 1 \mathrm{~A}$	$1 \mathrm{~A} \ldots 10 \mathrm{~A}$	$10 \mathrm{~A} \ldots 100 \mathrm{~A}$	$100 \mathrm{~A} \ldots .120 \mathrm{~A}$
Accuracy in \% of output signal	$\leq 1 \%+0.2 \mathrm{mV}$	$\leq 0.5 \%+0.2 \mathrm{mV}$	$\leq 0.3 \%$	$\leq 0.2 \%$
Phase shift	not specified	$\leq 2^{\circ}$	$\leq 1^{\circ}$	$\leq 1^{\circ}$

- 1000 A calibre

Primary current	$1 \mathrm{~A} . . .10 \mathrm{~A}$	$10 \mathrm{~A} \ldots 100 \mathrm{~A}$	$100 \mathrm{~A} \ldots 1000 \mathrm{~A}$	$1000 \mathrm{~A} . . .1200 \mathrm{~A}$
\% Accuracy of output signal	$\leq 1 \%+0.2 \mathrm{mV}$	$\leq 0.5 \%+0.2 \mathrm{mV}$	$\leq 0.2 \%$	$\leq 0.2 \%$
Phase shift	not specified	$\leq 2^{\circ}$	$\leq 1^{\circ}$	$\leq 1^{\circ}$

Bandwidth:

$10 \mathrm{~Hz} \ldots 3 \mathrm{kHz}$

Crest factor:

- 1 A calibre:
≤ 3 for I ≤ 3 A peak (1 Arms)
- 10 A calibre:
≤ 3 for I ≤ 30 A peak (10 Arms)
- 100 A calibre:
≤ 3 for I ≤ 300 A peak (100 Arms)
- 1000 A calibre:
≤ 3 for I ≤ 1700 A peak (500 Arms)

Maximum currents:

1000 A continuous for a frequency $\leq 500 \mathrm{~Hz}$ (limitation proportional to the inverse of $1 / 2$ of frequency beyond)
Load impedance:
$\geq 10 \mathrm{M} \Omega$ and $\leq 47 \mathrm{pF}$
Output impedance:

- 1 A calibre: $10 \mathrm{k} \Omega \pm 10 \%$

■ 10 A calibre: $1 \mathrm{k} \Omega \pm 10 \%$
■ 100 A calibre: $100 \Omega \pm 10 \%$
■ 1000 A calibre: $100 \Omega \pm 10 \%$

Operating voltage:

600 V rms

Common mode voltage:

600 V category III and pollution degree 2
Influence of adjacent conductor:
$\leq 1 \mathrm{~mA} / \mathrm{A}$ at 50 Hz
Influence of conductor position in jaws: $\leq 0.3 \%$ of output signal for frequencies $\leq 400 \mathrm{~Hz}$ Influence of frequency ${ }^{(2)}$:

- 1 A calibre:
$<2 \%$ of output signal $30 \mathrm{~Hz} \ldots 48 \mathrm{~Hz}$ and $65 \mathrm{~Hz} . .1$ kHz
$<10 \%$ of output signal $1 \mathrm{kHz} \ldots 3 \mathrm{kHz}$
- 10 A calibre:
$<2 \%$ of output signal $10 \mathrm{~Hz} . . .48 \mathrm{~Hz}$ and $65 \mathrm{~Hz} . .3 \mathrm{kHz}$
- 100 A calibre:
$<1.5 \%$ of output signal $10 \mathrm{~Hz} \ldots 48 \mathrm{~Hz}$ and $65 \mathrm{~Hz} \ldots 3 \mathrm{kHz}$
- 1000 A calibre:
$<1 \%$ of output signal $10 \mathrm{~Hz} \ldots 48 \mathrm{~Hz}$ and $65 \mathrm{~Hz} \ldots 1 \mathrm{kHz}$

Influence of crest factor:
$\leq 0.5 \%$ for crest factor limited to 3
Influence of DC current superimposed on rated current:
$\leq 10 \%$ at 1000 A for a DC current of 10 A

Current clamp for AC current

Model C173 (probe for leakage currents)

Mechanical specifications

Operating temperature:
$-10^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$

Storage temperature:

$-40^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Influence of temperature:
$\leq 0.15 \%$ of output signal per $10^{\circ} \mathrm{K}$ from $-10^{\circ} \mathrm{C} \ldots+40^{\circ} \mathrm{C}$
$\leq 0.2 \%$ of output signal per $10^{\circ} \mathrm{K}$ from
$+40^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$
Relative humidity for operation:
$0 . . .85$ \% RH with a linear decrease above
$35^{\circ} \mathrm{C}$
Influence of relative humidity:
<0.1 \% of output signal from 10% to 85% RH
Operating altitude:
0 to 2,000 m

Max. jaw opening:

53 mm
Patented progressive opening system
Clamping capacity:
Cable: Ø max 52 mm
Busbar: 1 busbar of $50 \times 5 \mathrm{~mm}$ or 4 busbars of $30 \times 5 \mathrm{~mm}$

Casing protection rating:

IP40 (IEC 529)
Drop test:
1 m (IEC 68-2-32)
Shock resistance:
100 g (IEC 68-2-27)
Vibration resistance:
$5 / 15 \mathrm{~Hz} 1.5 \mathrm{~mm}$
$15 / 25 \mathrm{~Hz} 1 \mathrm{~mm}$
$25 / 55 \mathrm{~Hz} 0.25 \mathrm{~mm}$
(IEC 68-2-6)
Self-extinguishing capability:
UL94 V0

Dimensions:

$216 \times 111 \times 45 \mathrm{~mm}$
Weight:
550 g
Colours:
Dark grey case with red jaws
Output:
1.5 m two-wire lead with double or reinforced insulation terminated by 2 elbowed male safety plugs (4 mm)

Safety specifications

Electrical safety:

Instrument with double insulation or reinforced insulation between the primary, the secondary and the grippable part located under the guard as per IEC 1010-1 \& IEC 1010-2-032

- 600 V category III, pollution degree 2
- 300 V category IV, pollution degree 2

Electromagnetic compatibility (EMC):
EN 50081-1: class B
EN 50082-2:

- Electrostatic discharge: IEC 1000-4-2
- Radiated field: IEC 1000-4-3
- Fast transients: IEC 1000-4-4
- Magnetic field at $50 / 60 \mathrm{~Hz}$: IEC $1000-4-8$

DEnVER

metrología electrónica, S.L.

Tel: +34 915698006
info@denver.es-www.denver.es
(1) Conditions of reference: $23^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{K}, 20 \%$ to $75 \% \mathrm{RH}$, sine signal, frequency of 48 Hz to 65 Hz , distortion factor <1\%, no DC components, external magnetic field < $40 \mathrm{~A} / \mathrm{m}$, no AC magnetic field, conductor centred for measurement, load impedance: $\geq 10 \mathrm{M} \Omega$ and $\leq 47 \mathrm{pF}$
(2) Out of reference domain

To order	Reference
AC current clamp model C173 with operating manual	P01120309
Accessory:	AN1 artificial neutral box (see capter 12)
	Bag n$^{1} 11$

